Title (Replace it with your project title)#

Whyjay Zheng, John Doe, & John Smith

Abstract#

Abstract text (<100 words).

Main#

Introduction#

Introduction content. No code blocks allowed in this section.

sub-heading of introduction#

Feel free to divide the introduction section as you like.

sub-sub-heading of introduction#

Something here.

sub-heading of introduction 2#

In-line Latex math: \(\hat{\textbf{a}}=(\textbf{X}^\text{T}\textbf{X}+\lambda \textbf{I})^{-1}\textbf{X}^\text{T}\textbf{y}\)

Latex math block:

\[ \arg\min\limits_{\textbf{a}} ||\textbf{y} − \textbf{Xa}||_2^2 + \lambda||\textbf{a}||_2^2 \]

Inserting a figure:

csrsr

Figure 1. CSRSR logo.

Results#

Your results. No code blocks allowed in this section.

Making a table:

Table 1. Something about the results.

Label

Model

RMSE

Trial-1

Linear (ordinary least square)

0.678

sub-heading of results#

Feel free to divide this section as you like.

Discussion#

Discussion. No code blocks allowed in this section.

sub-heading of discussion#

Feel free to divide this section as you like.

Conclusions#

one paragraph concluding your work

Methods#

Describe the data and methods. Code blocks allowed and recommended.

Though not necessary, I recommend that you upload the raw or processed data to somewhere that can be accessed directly for reproducing the work easily.

# Sample code cell

# Import modules
import numpy as np
from scipy.linalg import lstsq
import matplotlib.pyplot as plt

# Generate/Import data
x = np.linspace(-3, 3, 500)
y = 0.5 * x + np.random.randn(500)

# Analysis
X = x[:, np.newaxis]**[0, 1]
a, _, _, _ = lstsq(X, y)
print(f'Model: y = {a[0]:.2f} + {a[1]:.2f}x')

# Visualization
plt.plot(x, y, '.', color='xkcd:teal')
plt.plot(x, np.polyval(np.flip(a), x), color='xkcd:magenta')
plt.gca().set_aspect('equal', 'box');   
# I ddded a semicolon in the end of the last line 
# to prevent unnecessary output print.
Model: y = 0.06 + 0.56x
_images/795cb0af1c8a2448850e68f3af372596a3a041370a289c92ac9feabd2a32ffda.png

sub-heading of methods#

Feel free to divide the method section as you like.

References#

  1. Banks, G. C., et al. (2019). Answers to 18 Questions About Open Science Practices. Journal of Business and Psychology, 34(3), 257–270. https://doi.org/10.1007/s10869-018-9547-8 | Full text available on ResearchGate (accessed on February 16, 2023)

  2. Piller, C. (2022). Blots on a field? Science, 377(6604), 358–363. https://doi.org/10.1126/science.add9993